Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often

Andrew J Sheean,1 Volker Musahl,1 Harris S Slone,2 John W Xerogeanes,3 Danko Milinkovic,4 Christian Fink,5 Christian Hoser,5 International Quadriceps Tendon Interest Group

ABSTRACT

Traditional bone-patellar tendon-bone and hamstring tendon ACL grafts are not without limitations. A growing body of anatomic, biomechanical and clinical data has demonstrated the utility of quadriceps tendon autograft in arthroscopic knee ligament reconstruction. The quadriceps tendon autograft provides a robust volume of tissue that can be reliably harvested, mitigating the likelihood of variably sized grafts and obviating the necessity of allograft augmentation. Modern, minimally invasive harvest techniques offer the advantages of low rates of donor site morbidity and residual extensor mechanism strength deficits. New data suggest that quadriceps tendon autograft may possess superior biomechanical characteristics when compared with bone-patella tendon-bone (BPTB) autograft. However, there have been very few direct, prospective comparisons between the clinical outcomes associated with quadriceps tendon autograft and other autograft options (e.g. hamstring tendon and bone-patellar tendon-bone). Nevertheless, quadriceps tendon autograft should be one of the primary options in any knee surgeon’s armamentarium.

INTRODUCTION

Quadriceps tendon (QT) autografts are used far less commonly than hamstring (HS) tendon and bone-patella tendon-bone (BPTB) grafts in ACL reconstruction (ACLR).1–3 Historical studies suggested that the QT autograft had inferior biomechanical properties compared with the native ACL and was associated with unacceptably high rates of residual rotatory knee laxity and quadriceps weakness.4–6 These results were based largely on the behaviour of a ‘substitution’ graft harvest technique which involved extensive dissection of a 13 cm segment of extensor mechanism tissue composed of QT; prepatellar retinaculum and patellar tendon tissue.5 It was also observed that the graft harvested using the substitution technique was 14%–21% weaker than the native ACL with respect to ultimate load measurements.4 ACLR using autograft harvested using the substitution method has been demonstrated the utility of quadriceps tendon autograft in both primary and revision knee ligament reconstruction.8 9 The purpose of this review is to provide (1) a brief overview of relevant anatomy of the QT tendon and technical considerations for graft harvest; (2) the biomechanical rationale for QT autograft use and (3) an appraisal of the clinical applications and results associated with its use in knee ligament reconstruction.

NEW INFORMATION ON ANATOMY

Rather than a uniformly trilaminar tendon fibre arrangement as traditionally described, the QT is composed of varying tissue configurations, with bilaminar, complex trilaminar and quadrilaminar fibre orientations observed.10 Despite this variability, a thin fatty layer generally exists between the superficial rectus femoris and deep vastus intermedius; this can be used as a landmark and followed distally to the common QT and the proximal extent of the suprapatellar pouch. Additionally, this layer provides a natural demarcation for splitting the tendon into two limbs suitable for double bundle reconstruction techniques.11 12 The QT is 7–8.5 cm in length from the superior pole of the patella extending proximally to the myotendinous junction of the rectus femoris. This tendon length facilitates the harvest of both a soft tissue only and soft tissue with patella bone block autograft (figures 1A and 2B). The width of the tendon ranges between 2.5 and 3 cm, with the greatest width found approximately 3 cm proximal to the tendon’s insertion on the patella.13–15 Additionally, the thickness of the QT is greatest at its distal insertion on the patella, measuring 18±3 mm in males and 16±2 mm in females.15 The QT’s thickness remains relatively constant throughout the distal 6 cm, measuring 7.4 mm, 7.4 mm and 7.1 mm at 10, 30 and 60 mm proximal to its distal insertion.15

The variability in QT size between patients may be explained by patient-specific anthropometrics. Ultrasound measurements of skeletal immature patients reveals predictable increases in QT thickness relative to age, height and weight.16 Moreover, a separate analysis showed height to be the most important predictor of length of the tendinous portion of the QT graft among a cohort of patients, 34.9±12.6 years of age (range: 17–60 years).17 These relationships can be used preoperatively to verify that the harvested autograft will be...
of sufficient diameter and length to accommodate ligamentous reconstructions.

Overall, the dimensions of the quadriceps facilitate harvesting a robust graft while preserving substantial residual, donor-site tissue. Using volumetric analyses of three-dimensional models of patellar tendon and QT after the removal of a 80mm long×10 mm wide graft, Xerogeanes et al showed that the intra-articular volume of the QT graft was 87.5% greater than that of the patellar tendon graft, while harvesting of the QT autograft left a mean percentage volume of residual QT that was greater than that left after patella tendon graft harvest (61.3% vs. 56.6%, respectively).15

The relationship between the QT and the suprapatellar pouch is also relatively consistent. The pouch extends proximally no more than 5 cm from the superior pole of the patella.17 Consequently, dissection proximal to this level is unlikely to violate the suprapatellar pouch. Beyond the suprapatellar pouch, dissection should not continue proximally into the myotendinous junction (6–8 cm proximal to the patella) to limit cosmetic deformities, postoperative haematoma and, more importantly, functional strength deficits.

The adjacent vascular anatomy should also be considered when planning QT graft harvest. The descending branch of the lateral circumflex femoral artery courses distally between the vastus lateralis and rectus femoris, anastomosing with branches of the lateral superior genicular artery. Therefore, a centrally based graft harvest within the QT that spares the lateral perforating vessels and avoids violation of the quadriceps muscle will mitigate the likelihood of postoperative haematoma.

Recently described techniques for minimally invasive QT autograft harvest both with and without a patellar bone block have exploited a more precise understanding of the native QT anatomy. Using a 2–3 cm transverse incision centred over the superior pole of the patella, Fink et al have described a minimally invasive harvest technique using a double knife 8–12 mm in width (Karl Storz, Tuttingen, Germany) and a series of specialised tendon separator and cutter (Karl Storz) to truncate the autograft proximally18 (figure 2). Slone et al have described a similar minimally invasive soft tissue-only harvest technique using a 1.5–2 cm longitudinal incision extending proximally from the superior pole of the patella, just lateral to its midpoint.19 The QT is incised from distal to proximal with a triple blade harvest knife (Arthrex, Naples, Florida, USA) using a ‘push’ technique and cut proximally using QT Stripper/Cutter (Arthrex) (figure 3A–C).

BIOMECHANICAL PROPERTIES OF QT AUTOGRAFT

Recent biomechanical data pertaining to the structural properties of QT autograft have demonstrated superior results compared with BPTB autograft with respect to load to failure, strain at failure and Young’s modulus of elasticity. QT autograft has been shown to have a significantly larger cross-sectional area (91.2±10 mm²) than BPTB autograft (48.4±8 mm²) (p=0.005)26 and significantly greater ultimate load to failure (QT: 2185.9±758.8 N vs BPTB: 1580.6±479.4 N, p=0.45).

It should be noted that majority of these data are based on QT autograft harvested with a patellar bone block, and there is comparatively less that has been studied with respect to soft tissue-only QT autografts. The load to tendon failure of a 1 cm wide×9 cm long full thickness QT autograft (1075±449 N) has been observed to be 1.36 times greater than that of a comparably sized patella tendon graft.13 Comparison of the strain behaviours of 1 cm wide QT and patellar tendon before and after cyclic conditioning (200 cycles between 50 and 800 N at 0.5 Hz) demonstrated the strain failure for BPTB grafts to be 14.4%±3.3% versus 11.2%±2.2% (p=0.04) for QT grafts.18 Additionally, significantly larger cross-sectional areas for preconditioned QT grafts compared with BPTB grafts of identical width have been observed (61.9±9.0 mm² vs 34.5±4.4 mm², p<0.001).

Apart from the application of QT in ACL reconstruction, QT has also been used in PCL reconstruction (PCLR).21–28 However, comparatively less has been written about the biomechanical performance of QT autograft in this setting. A recent cadaveric analysis elucidated the biomechanical properties of the native PCL to QT-PCL reconstructed knees and Achilles tendon with bone block allograft-PCL reconstructed knees.29 Both QT and Achilles tendon with bone block allografts were prepared with an 11 mm wide by 25 mm long bone block and a tendon length of 100 mm. Although neither QT nor Achilles tendon with bone

Figure 1 (A) Soft tissue-only quadriceps tendon autograft and (B) quadriceps tendon autograft harvested with a patella bone block.

Figure 2 Quadriceps tendon autograft harvested via minimally invasive technique through a 2–3 cm transverse incision centred over the superior pole of the patella.
block allograft demonstrated comparable amounts of creep deformation and ultimate load to that of the intact PCL. QT was associated with greater maximum forces during failure testing (QT: 616.19±148.07 vs Achilles tendon with bone block: 616.19±123.72, p=0.048).

CLINICAL RESULTS

ACL reconstruction

The suitability of QT autograft—with or without patella bone block—in ACL reconstruction has been established in the literature as shown by Slone et al in a systematic review of 1756 ACL reconstructions, 1154 of which were performed with QT autograft. However, it should be noted that these authors did not complete a quality assessment of the studies included in their review. Multiple authors have reported favourable results of ACL reconstruction with QT autograft with respect to postoperative knee stability (arthroscopic testing, Lachman testing, pivot-shift testing), range of motion and functional outcomes. Moreover, various series have also suggested that QT autograft may be preferable to BPTB autograft in terms of donor site morbidity.

Recently, several comparative studies have assessed for differences in clinical outcomes between ACLR performed with HS autograft and QT autograft. A comparative cohort study comprised 45 patients with QT and patella bone block and 41 patients with HS autograft at a mean follow-up of 3.6±0.4 years showed that the QT autograft group reported significantly better Lysholm, Knee injury and Osteoarthritis Outcome Score (KOOS) Symptoms and KOOS Sport functional scores compared with those of the HS autograft group. Additionally, a significantly larger proportion of patients from the QT autograft group had a Lachman grade 0 (93% vs 46%, p<0.005) and smaller side-to-side differences in anterior tibial translation as measured with the KT-1000 arthrometer (1.1±0.9mm vs 3.1±1.3mm, p=0.37.) No significant differences were observed in graft rupture rates between QT and HS autograft groups. Comparable results among 80 patients undergoing ACLR using partial thickness (5mm) QT with patella bone block autograft (40 patients) and HS autograft (40 patients) have been reported, with no significant differences between groups at any time point (preinjury, 6 months, 12 months, 24 months postoperative) in Lysholm, pain (as represented by Visual Analogue Scale (VAS)), Tegner Activity Level.

The effect of QT autograft on knee extensor strength has also been a matter of interest in comparisons between ACLR performed with QT and HS autograft, with somewhat heterogeneous results being reported by multiple authors. Retrospectively compared isokinetic data on two groups of 48 patients matched according to age, sex and body mass index (BMI) showed no significant differences between groups in knee extensor strength at both 60°/s and 180°/s at any time point postoperative. Conversely, the HS autograft group demonstrated significantly diminished knee flexor strength at 2 years postoperative relative to the contralateral lower extremity. A similar analysis focused on the differential muscle strength ratio (Hamstring/Quadriceps ratio (H/Q)) observed in the affected lower extremity, as HS weakness in the setting of preserved quadriceps strength may be a risk factor for ACL rupture in females. While significant differences between groups were observed in quadriceps strength, those patients with QT autograft ACLR demonstrated higher H/Q ratios, which the authors hypothesised may be protective against graft rupture in the first year after surgery.

PCL reconstruction

Because of its excellent biomechanical properties and reliably robust dimensions, the QT is also well suited for PCL reconstruction. Chen et al reported on outcomes of single bundle PCL reconstructions using an 8cm QT autograft with 20×10mm patella bone block in 32 patients, 29 of which were available for follow-up at 3 years postoperative. Isolated PCL reconstructions were performed in 24 of 29 (83%) of cases. Satisfactory results were observed in terms of functional outcomes at final follow-up (mean Lysholm score: 90.17±9.71) and residual laxity as represented by posterior tibial translation with the KT-1000 (15 of 29 (86%) patients with 5mm or less.)

COMPLICATIONS

Harvest of the QT can have complications. Multiple donor-site morbidities have been reported, including bleeding and haematoma formation, cosmetic deformities of the distal thigh and patella fracture in cases where a bone block in harvested. Patella fracture, in particular, is a troubling, but exceedingly rare complication of QT autograft harvest, occurring in 4 of 1154 (0.03%) ACLR. However, this rate is comparable to the fracture rate (0.01%) associated BTB autograft reported in one large series of 1725 patients. Nevertheless, should a patellar bone block being harvested with the QT, it is advisable that it should not exceed 30% of the patellar thickness, and it should not be harvested from the lateral aspect of the patella. Should the surgeon prefer to negate the risk of patella fracture entirely, the QT can be harvested as a soft tissue-only autograft (figure 1A.)
REHABILITATION

The functional consequences of ACL and PCL injury and reconstruction on the quadriceps and HS musculature are well described but there is a relative paucity of data available pertaining to the optimal rehabilitation tactic specific to ACLR or PCLR performed with QT autograft. There is heterogeneous evidence on the extent of observed amounts of residual quadriceps strength deficits after QT ACLR.\(^4\) The multiple reports outlined above that demonstrated equivalent if not superior functional outcomes of QT ACLR compared with either BPTB or HS ACL mean that postoperative rehabilitation strategies need not necessarily be altered significantly to achieve acceptable clinical results. Moreover, the preservation of knee flexion strength afforded by QT autograft harvest may be advantageous in maintaining a more appropriate dynamic balance between quadriceps and HS strength.\(^4\)\(^5\)\(^6\)

As is typical of postoperative ACLR rehabilitation regimens, focus should be placed on restoring quadriceps strength, including using open-chain exercises in the protected range from 90° to 60° of knee flexion that limit anterior tibial translation while still allowing isolation of the quadriceps.\(^6\) In the event of harvest site morbidity in the rehabilitation period, an approach similar to that taken for quadriceps tendinopathy may be used. This involved preferential stretching of the rectus femoris and systematic loading of the quadriceps to increase tolerance to load. A criterion-based approach to ACLR rehabilitation is recommended, with progression to the subsequent stage of rehabilitation occurring only after objectively measured indices of physical performance have been met.\(^7\)\(^8\) Similarly, recommendations for rehabilitation following PCLR with QT autograft do not vary substantially from generally accepted regimens—posterior tibial translation should be prevented with knee flexion for the first 6 weeks after surgery with resisted strength-enhancing beginning 12 weeks from surgery. The use of a dynamic force (DF) brace (Rebound PCL brace, Össur, Foothill Ranch, California, USA) may be of particular utility in this setting as well in order to achieve the ligamentous reconstruction. Applying an anteriorly directed force to the posterior aspect of the proximal tibia that increases with knee flexion, the DF brace has been shown to more closely replicate the in situ loading profile of the native PCL when compared with analogous, static force braces.\(^4\)\(^9\)

CONCLUSION

The renaissance of the use of QT autograft in knee ligament reconstruction has been borne out of advances in contemporary understanding of the relevant anatomy, improved harvest techniques, predictable graft size, versatility in the skeletally immature, less donor site morbidity, and an emerging body of clinical evidence that suggests outcomes to be equivalent, if not superior to other autograft options.

Collaborators

Contributors

AJS, VM, DM and HSS contributed directly to the writing of the manuscript. CH, JWX and CF offered critical reviews of the manuscript and participated in the editing process.

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests

LE is a member of the International Quadriceps Tendon Interest Group, and he was not part of the peer review process. The authors report the following conflicts of interest or sources of funding: JWX reports personal fees and non-financial support from Arthrex during the conduct of the study; grants from Arthrex, outside the submitted work. The remaining authors have no disclosures relevant to the publication of this review.

Patient consent

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

References

